

O TOTAL GAMMA RADIATION DETECTION

□ APPLICATIONS

- Uranium prospection: Mapping, Ground detection, and detection of aerial anomalies K, U, Th or full count
- Mining prospection: Mapping of clay or hydrothermal alterarion zones, help and/or complement for geological mapping
- Public safety
- Monitoring of industrial or mining sites following rehabilitation
- NORMS search
- Expertise

Self-contained, portable, sturdy, dust and water proof
Ergonomic, simple to use
Gamma Measurement obtained with a scintillator and a photomultiplier
Universal use with its numerous operating modes
Trigger controlled actions
Screen display of: measure in progress, mean measure, device status
Onboard GPS for the geolocation of measurement points
Data storage of measurements and corresponding geographical data
USB port
Powered by two 1.5V batteries allowing over 4 days of autonomy
Setting and data reading with SPPG-Reader.

Specifications

SPPGamma

Portable Scintillometer

SPECIFICATIONS

Operating Principle:

Gamma photons emitted by a radioactive source interact with the scintillating material, producing photons which are in turn detected by a photomultiplier.

The number of photons detected is proportional to the number of disintegrations emitted originally.

Quantity measured: Bq

Results are given in counts per second (cps)

Detection:

With a scintillator coupled to a photomultiplier Scintillator NaI(Tl) Ø 38.1 mm * 25.4 mm (h) Photomultiplier Scionix Ø 38.1 mm

High power voltage 1000V Threshold energy: 30 keV Maximum energy: 1500 keV

Additional Sensors

Temperature: ±2.5°C accuracy

Measure of the PM high voltage power supply: for

the regulation of the voltage

Measure of battery power: Automatic shutdown if

battery too low

Light sensor: Automatic lighting of the LCD screen

${\bf Geolocation:}$

On board GPS

Resolution: 3 m for the best reception conditions.

Electronics:

32 MHz 16 bits microcontroller circuit board

Input / Output

Display: Backlit 160x160 pixels LCD screen

Sound buzzer: trigger action, menu navigation, radio-

activity level

PC connection: By USB cable

Data backup:

4Mb SRAM Memory

3.6V Lithium battery

Storage capacity of 9 000 measures with GPS data or 30 000 measures without

Operation

Menu navigation by trigger action Auto test when switched on

Constant auto check

Automatic standby if idle (programmable idle time)

Operating modes:

In all modes, display of the radioactivity value, refreshed every 0.1 to 1s

Sampling: Current radioactivity recorded by pressing the trigger

Automatic (Tracking): Automatic recording of the radioactivity value, programmable period.

Power:

2 type D batteries1.5V located in the handle Autonomy: 110 hours with GPS off, 40 hours with GPS on

Housing:

ABS and PC plastic housing H*W*L: 230*90*225 mm

Weight: 1.5 kg

Operating conditions:

-20°C to +55°C, 10-90 % relative humidity IP65 rated

SPPGamma is supplied with:

- Lockable carry case
- Carrying pouch for use on-site
- USB connecting cable
- Operating software SPPG-Reader
- Calibration certificate
- User guide

SPPG-Reader

Software operating under Microsoft Windows Vista, Windows7 or 8. Communicates with the SPPGamma via USB

Functions:

- Readout of the measures recorded by the device and backup in text format, accessible from Excel.
- Initialization and setting of operating parameters
- Clock settings

Order References

SPPGamma Ref : P-442-100

NT-XB442-202 indB July 2015